Wang HL, Wang QF, Huang ZG, Shi WF (2007) Synthesis and thermal degradation behaviors of hyperbranched polyphosphate. Polymer Degradation and Stability 92(10), 1788-1794. [In English]
Web link: http://dx.doi.org/10.1016/j.polymdegradstab.2007.07.008
Keywords:
synthesis; hyperbranched; flame retardant; polyphosphate; thermal; degradation; proton-transfer polymerization; flame-retardant; intumescent systems; a(2)+b-3 approach; fire protection; epoxy-resins; part ii; polymers; monomers; polyimides
Abstract: A novel epoxy-terminated hyperbranched polyphosphate (E-HBPP) was synthesized by employing an A(2) + B-3 polycondensation and characterized by FTIR, H-1 NMR and GPC. E-HBPP was used as a reactive-type flame retardant for diglycidyl ether of bisphenol-A/m-phenylene diamine (DGEBA/mPDA) system. A series of flame retardant resins were prepared and their flame retardancy was monitored by the limiting oxygen index (LOI). The results showed that the LOI value of the cured samples and the degree of expansion of the formed char after burning increased along with the E-HBPP content. Their thermal degradation behaviors were investigated by thermogravimetric analysis and in situ FTIR and showed that the phosphate group of E-HBPP first degraded to form poly(phosphoric acid)s at around 300 degrees C, which had a major contribution to form the compact char to protect the sample from further degradation. The dynamic mechanical thermal properties were studied by dynamic mechanical thermal analysis (DMTA) and the results showed a good miscibility between E-HBPP and DGEBA. The mechanical properties of the cured films were also investigated. Less than 20% E-HBPP addition improved both the tensile strength and elongation at break. (C) 2007 Elsevier Ltd. All rights reserved.