首页  科学研究  学术论文  2014年
 
Y. M. Ding, C. J. Wang and S. X. Lu (2014) Journal Of Hazardous Materials 271 82-88.
文章来源:SKLFS    作者:SKLFS    发布时间:2015-03-30

Y. M. Ding, C. J. Wang and S. X. Lu (2014) The effect of azeotropism on combustion characteristics of blended fuel pool fire. Journal/Journal Of Hazardous Materials 271 82-88. [In English]
Web link: http://dx.doi.org/10.1016/j.jhazmat.2014.02.012
Keywords: Azeotropism; Flame height; Burning rate; Centerline temperature; Pool; fire; PRESSURE; PLUMES

Abstract: The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm x 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel. (C) 2014 Elsevier B.V. All rights reserved.

 
 
相关链接
Y. M. Ding, C. J. Wang and S. X. Lu (2014) Journal Of Hazardous Materials 271 82-88.
联系我们
安徽省合肥市金寨路96号
中国科学技术大学
火灾科学国家重点实验室
邮政编码:230026
   
Tel:(+86)551 63601651
Fax:(+86)551 63601669
E-mail:sklfs@ustc.edu.cn
Copyright © 1990-2011 State Key Laboratory of Fire Science, University of Science and Technology of China
火灾科学国家重点实验室 版权所有 皖ICP备:002106505 号