首页  新闻中心  学术报告
 
美国WPI Ali S. Rangwala博士学术报告通知
文章来源:  作者:  发布时间:2014-12-16

各位老师:

  美国伍斯特理工(WPI)Ali S. Rangwala博士将于本月18-19日访问实验室并做学术报告,请感兴趣老师积极参加,并请通知各组同学积极参加。

报告人:Ali S. Rangwala
报告时间:12月18日(星期四)15:00-16:00
报告地点:特种实验楼二楼学术报告厅
报告人单位:
Department of Fire Protection Engineering,
Worcester Polytechnic Institute, Worcester, MA 01609 USA

报告题目:Flame Propagation in Dust Clouds

报告摘要:

Dust deflagrations or flame propagation in a mixture of flammable particles (~10 - 100 μm) and air or gases has gained increasing importance in industrial fire and explosion safety. Every year dust deflagrations in coal mines and chemical plants cause extensive material damage, injury, and loss of life. Current guidance for prevention and suppression originates from experiments performed in simple vessel
arrangements, and the parameters used to assess the hazard of flammable dusts are empirically driven. The problem is thus unresolved from a fire and explosion safety perspective. From a scientific viewpoint enhancing our fundamental knowledge of particle combustion lies at the heart of national security priorities such as energy efficiency and pollution control by improving the design of power plants. There has also been a recent push towards studying influence of nano-particulate matter in
combustion systems.

In this talk, I will describe the results of laboratory experiments to identify the controlling parameters of laminar and turbulent hybrid dust deflagration mechanisms (Xie et al., Comb. Flame, 159, 2449-2456, 2012, and Rockwell and Rangwala, Comb. Flame, 160, 635-640, 2013). A novel premixed-dust-air burner is designed to measure the burning velocity of a hybrid mixture of Pittsburgh seam coal dust, with typical particle sizes in the range of 25 to 106 μm and methane-air. Figure 1 depicts shadowgraph images of a sample of flames tested. The results show that adding coal dust in methane-air premixed flame reduces the burning velocity for laminar flames and increases as turbulent intensities are increased. Two competing effects are considered to explain these trends. The first effect is due to volatile release, which increases the overall equivalence ratio and thus, the burning velocity. The second is the heat sink effect the coal particles take up to release the volatiles. A
mathematical model is developed considering these effects.


报告人简介:

 


Ali S. Rangwala is an associate professor in the department of Fire Protection Engineering at Worcester Polytechnic Institute (WPI). He has a BS in Electrical Engineering, from the Government College of Engineering, Pune, India (2000), an MS in Fire Protection Engineering from the University of Maryland, College Park (2002), and a PhD in Mechanical and Aerospace Engineering from the University of California,
San Diego (2006). Professor Rangwala’s research interests are in the area of industrial fire and explosions. His recent projects include, deflagration of combustible dust clouds, ignition behavior of combustible dust layers, in-situ burning of oil, spread of an oil slick in channels, velocity measuring techniques in fire induced flows, and flame propagation and burning rate behavior of condensed fuel surfaces.

 

 

 

 

火灾科学国家重点实验室
2014.12.16

 
 
相关链接
联系我们
安徽省合肥市金寨路96号
中国科学技术大学
火灾安全全国重点实验室
邮政编码:230026
   
Tel:(+86)551 63601651
Fax:(+86)551 63601669
E-mail:sklfs@ustc.edu.cn
Copyright © 1990-2011 State Key Laboratory of Fire Science, University of Science and Technology of China
火灾科学国家重点实验室 版权所有 皖ICP备:002106505 号